Subject: question on net attendance rate (NAR) Posted by hanmeiying on Fri, 30 Aug 2013 18:38:33 GMT
 View Forum Message <> Reply to Message

I wonder how they develop the net school attendance rate on bangladesh report 2011 page 26. I was able to match other numbers, but not this one.
Here is how I did it.
Use household membership file, delete those non defacto member using hv103
choose age between 6-10 for primary school attendance ratio calculation
then use survey weight estimation of v005/10000000
the education variable I used is hv122, school attendance: primary if hv122==1 and secondary if hv122 ==2

The proportion of 6-10 year age group net attendance ratio for primary school is 78% from my estimation instead of 74.8 !

Please anyone, let me know if you have any idea why this is so.

Subject: Re: question on net attendance rate (NAR) Posted by Liz-DHS on Thu, 31 Oct 2013 19:40:54 GMT View Forum Message <> Reply to Message

Dear User,

I am not a programmer, but here is some code from our standard tables to calculate School Attendance Ratios. It's in CSPro, but may provide some guidance by looking at some of the logic.
crosstab float(1) t213 hv025w+hv024w+hv270w+total attrat*(hhsex+total+gparity) schlev exclude(rowzero,colzero,percents,totals,specval)

```
title( "Table 2.13 School attendance ratios"," ",
"Net attendance ratios (NAR) and gross attendance ratios (GAR)",
"for the de facto household population by sex and level of schooling; and the",
"Gender Parity Index (GPI), according to background characteristics, Country 2011" ) stub( "Background characteristic" );
```

\{ table 2.13, 2.13a (figure 2.2) \}
\{ adjust the the country's CMC school year when the survey goes across two school calendar years \}
cmceducf = cmceduci;
if HV008 >= cmceduci +12 then cmceducf $=$ cmceduci +12 endif;
for i in RECH1_EDT do hhsex = HV104;
hsex = HV104;
\{ calculate age at the beginning of country's school year \}
if cmcbirth(i) <> 0 then ageatsch $=\operatorname{int}(($ cmceducf-cmcbirth(i)) / 12);
else
\{ impute an age at the beginnig of the school year when CMC of birth unknown \}
xtemp = HV008-HV105*12;
cmctemp $=$ random(xtemp-11, xtemp);
ageatsch $=\operatorname{int}(($ cmceducf-cmctemp $) / 12)$;
endif;
if HV103 $=1 \&$ HV105 in 5:24 then $\quad\{$ de facto population 5-24 (!! check if country asks for 6-24) \}
\{!! check primary school age for the country and adjust it \}
if ageatsch in 7:12 then
schlev $=1 ; \quad\{$ primary $\}$
attrat $=2 ; \quad\{$ denominator kids $7-12$ for gross $\}$
xtab(t213w, rweight);
attrat $=1 ; \quad$ \{ denominator kids $7-12$ for net $\}$
xtab(t213w, rweight);
if HV122 $=1$ then $\quad\{$ in primary \}
xtab(t213, rweight); \quad numerator 7 -12 for net \}
endif;
endif;
\{ !! check secondary school age for the country and adjust it \}
if ageatsch in 13:18 then
schlev = 2;
attrat = 2;
xtab(t213w, rweight);
attrat $=1$;
xtab(t213w, rweight);
if HV122 $=2$ then $\quad\{$ in secondary $\}$
xtab(t213, rweight); \{ numerator 13-18 for net \}
endif;
\{ numerator all in school for gross attendance ratio \}
schlev = notappl;
attrat $=2$;
if HV122 $=1$ then $\quad\{$ in primary $\}$
schlev = 1;
elseif HV122 $=2$ then $\quad\{$ in secondary $\}$
schlev = 2;
endif;
xtab(t213, rweight);
\{ table 2.13a for figure 2.2 \}
agehhs = HV105;
colt213a = 2;
xtab(t213a, rweight);
if HV121 in $1,2 \&$ HV122 <> 0 then colt213a = 1;
xtab(t213a, rweight);
endif;
endif;
enddo;

