> | Subject: Selecting sample within one standard deviation in R |
| :--- |
| Posted by berhardt93 on Tue, 15 Feb 2022 20:00:29 GMT |
| View Forum Message <> Reply to Message |
| Hi, |
| I'm looking at the Nigeria 2018 DHS. I created a variable "tot encounters" that calculates the |
| number of sexual encounters reported by an individual in the past 12 months by adding the values |
| from their most recent, second most recent, and third most recent partners. I also created the |
| weighting variable "weight". |

I found the mean of the weighted variable:
weighted.mean(yesNUIS\$tot_encounters, yesNUIS\$weight)
Then I found the standard deviation:
weighted_var <- wtd.var(yesNUIS\$tot_encounters, yesNUIS\$weight)
weighted_sd <- sqrt(weighted_var)
Weighted mean $=27.78$
Standard deviation $=25.57$
Now I want to select all observations that fall within one standard deviation (2.21-53.35). When I tried to do this, the sample was 80% of the original sample, not 68% (aka. the number of observations within one standard deviation of the mean):
sdNUIS <- yesNUIS
sdNUIS \%<>\%
dplyr::filter(tot_encounters > 2.2057 \& tot_encounters < 53.3527)
How would I make sure that this filter only includes the 68% within one standard deviation of the weighted mean?

Thanks!

Subject: Re: Selecting sample within one standard deviation in R Posted by Bridgette-DHS on Tue, 15 Feb 2022 21:52:45 GMT
View Forum Message <> Reply to Message

Following is a response from DHS Research \& Data Analysis Director, Tom Pullum:
You have an extremely skewed distribution. The "68\%" rule works for normally distributed variables, and the normal approximation doesn't work for your variable. I can think of two options.

One would be to take the log of the frequency, which will have a distribution that is more nearly normal, but there's the problem that you can't take the log of 0 . Another option would be to calculate the percentiles of the distribution. If you identify the 25th and 75th percentiles, then you have the boundaries for the middle 50%. Or identify the 16th and 84th percentiles, which enclose the middle 68%.

Page 2 of 2 ---- Generated from The DHS Program User Forum

