The DHS Program User Forum
Discussions regarding The DHS Program data and results
Home » Topics » Mortality » UNDER FIVE MORTALITY
Re: UNDER FIVE MORTALITY [message #15068 is a reply to message #15067] Tue, 29 May 2018 19:20 Go to previous messageGo to previous message
Trevor-DHS is currently offline  Trevor-DHS
Messages: 802
Registered: January 2013
Senior Member
Here is a fairly simplistic piece of code that follows the approach given in the Guide to DHS Statistics, and produces estimates for five five-year periods.
It doesn't produce standard errors or confidence intervals, but allows you to see how the calculations are done:
* Example of early childhood mortality rates calculations
* Trevor Croft, March 9, 2018

* Change directory to the data directory
cd "C:\Users\xxxx\Data"
* Open DHS dataset - births recode file
use v005 v008 b3 b5 b7 using "IABR71FL.DTA", clear

* Create variables for time period limits - need to use variables as these change from case to case
gen t1 = .
gen t2 = .
* Initialize local variable lists used later
local vlist
local vlist2

* Loop through 5-year time periods
forvalues period = 0/4 {

	* Calculate upper limit of time period
	replace t2 = v008 - 60*`period'
	* Calculate lower limit of time period
	replace t1 = t2 - 60
	* List age group lower limits
	local agegroups 0 1 3 6 12 24 36 48 60
	* Turn thse into tokens to use for the upper limits of the age groups
	tokenize `agegroups'
	* Loop through the age groups
	foreach age of numlist `agegroups' {
		* Ignore the 60+ age group - this was just to set the upper limit for the last age group - see a2
		if (`age' < 60) {
			* Create local for lower limit of age group - use locals as these are constants
			local a1 = `age'
			* Create local for upper limit of age group = the lower limit of the next age group
			local a2 = `2'
			
			* Cohort A numerator
			gen numA`age'_`period' = ((`a1' <= b7 & b7 < `a2') & (t1 - `a2' <= b3 & b3 < t1 - `a1'))
			* Cohort B numerator
			gen numB`age'_`period' = ((`a1' <= b7 & b7 < `a2') & (t1 - `a1' <= b3 & b3 < t2 - `a2'))
			* Cohort C numerator
			gen numC`age'_`period' = ((`a1' <= b7 & b7 < `a2') & (t2 - `a2' <= b3 & b3 < t2 - `a1'))
			* Cohort A denominator
			gen denA`age'_`period' = ( (b5 == 1 | `a1' <= b7)  & (t1 - `a2' <= b3 & b3 < t1 - `a1'))
			* Cohort B denominator
			gen denB`age'_`period' = ( (b5 == 1 | `a1' <= b7)  & (t1 - `a1' <= b3 & b3 < t2 - `a2'))
			* Cohort C denominator
			gen denC`age'_`period' = ( (b5 == 1 | `a1' <= b7)  & (t2 - `a2' <= b3 & b3 < t2 - `a1'))
			
			* Count half for deaths for cohort C, except for the last period where all deaths are counted
			local f = 0.5
			if (`period' == 0) {
				local f = 1
			}
			* Sum numerators from cohorts A, B and C for this case
			gen num`age'_`period' = 0.5*numA`age'_`period' + numB`age'_`period' + numC`age'_`period'*`f'
			* Sum denominators from chorts A, B and C for this case
			gen den`age'_`period' = 0.5*denA`age'_`period' + denB`age'_`period' + denC`age'_`period'*0.5
			
			* Generate list of numerator and denominator variables for period and age for collapse command below
			local vlist `vlist' num`age'_`period' den`age'_`period'
			* Similarly generate list of numerator and denominator variables for period only for reshape command below
			if (`period' == 0) {
				local vlist2 `vlist2' num`age'_  den`age'_
			}
		}
		* Shift the token list to the next age group 
		mac shift
	}
}


* Sum all numerators and denominators - weighted sum
collapse (sum) `vlist' [pw=v005/1000000]

* Add a variable to act as ID for the reshape
gen x = 0
* Reshape long by age group
reshape long `vlist2', i(x) j(period)
* Drop the underscore (_) on the end of variable names
rename *_ *

* Reshape now for periods
reshape long num den, i(period) j(a1)
* Drop the x variable as we no longer need it
drop x

* Generate the upper bounds of the age groups
gen a2 = a1[_n+1]
replace a2 = 60 if a1 == 48

* Calculate the age group mortality probabilities
gen death = num / den
* Calculate the age group survival probabilities
gen surv = 1 - death

* Generate product of survival probabilities:
gen prodsurv = surv if a1 == 0
replace prodsurv = surv * prodsurv[_n-1] if a1 > 0
* Generate product of survival probabilities for child mortality rate, starting at 12 months
gen prodsurv2 = surv if a1 == 12
replace prodsurv2 = surv * prodsurv2[_n-1] if a1 > 12

* Neonatal mortality rate
gen nmr = 1000*(1-prodsurv) if a2 == 1
* Postneonatal mortality rate (calculated later)
gen pnmr = .
* Infant mortality rate
gen imr = 1000*(1-prodsurv) if a2 == 12
* Child mortality rate
gen cmr = 1000*(1-prodsurv2) if a2 == 60
* Under-five mortality rate
gen u5mr = 1000*(1-prodsurv) if a2 == 60

* Capture just the rates
collapse (min) nmr pnmr imr cmr u5mr, by(period)

* Postneonatal mortality rate = IMR - NMR
replace pnmr = imr - nmr

* Now see the results
list
And the results basically match the syncmrates program
     +---------------------------------------------------------------+
     | period        nmr       pnmr        imr        cmr       u5mr |
     |---------------------------------------------------------------|
  1. |      0   29.46365    11.2654   40.72905   9.390652   49.73727 |
  2. |      1   31.49295   12.24667   43.73962   11.31612   54.56078 |
  3. |      2   33.03296   13.47327   46.50623   12.88736   58.79426 |
  4. |      3   36.41945   15.01405    51.4335   16.21401   66.81353 |
  5. |      4   40.38089   18.37582   58.75671   19.31465   76.93649 |
     +---------------------------------------------------------------+
 
Read Message
Read Message
Read Message
Read Message
Read Message
Read Message
Read Message
Read Message
Read Message
Read Message
Read Message
Read Message
Read Message
Read Message
Read Message
Read Message
Read Message
Read Message
Read Message
Read Message
Read Message
Read Message
Previous Topic: State wise childhood mortality rates by wealth quintile
Next Topic: Child Mortality Calculations
Goto Forum:
  


Current Time: Thu Oct 31 20:19:38 Coordinated Universal Time 2024