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Abstract

This paper addresses the problem of model misspecification bias
when estimating cohort-level determinants of child height-for-age z-
score (HAZ) using data from the Demographic and Health Surveys
(DHS). I show that the combination of DHS survey design and the
biological realities of child health in developing countries create an ar-
tifact that can strongly bias regression estimates when identification
relies on seasonal, annual or spatio-temporal variation associated with
a subject’s birth cohort. I formalize the econometric problem and show
that flexible specifications of the HAZ-age profile can greatly mitigate
the bias. When regression models can exploit within-cohort variation
in the covariate of interest, appropriate fixed-effects models can effec-
tively purge the bias. I also provide Monte Carlo evidence that DHS
recommended inference strategies produce standard errors that are too
small when estimating birth cohort determinants of HAZ.
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1 Introduction

I demonstrate how a statistical artifact in Demographic and Health Survey

(DHS) data can bias regression estimates of cohort determinants of child

height-for-age Z-score (HAZ). The short survey window of the DHS and the

relatively long periods between survey rounds induce a mechanical, cyclical

relationship in the data between birth cohort and age-at-measurement. Sep-

arately, the biological effects on children of chronic undernutrition and poor

health cause a rapid loss of HAZ over the first few years of life, generating

a strong, non-linear relationship between HAZ and age-at-measurement (the

HAZ-age profile). Together, survey design and biology conspire to induce a

spurious correlation in the data between birth cohort and HAZ that is driven

by age-at-measurement and specifically determined by the particular dates on

which the various survey rounds were conducted. The artifact is likely to bias

coefficient estimates when the HAZ-age profile is misspecified in specific but

common ways.

I refer to this relationship between birth cohort and HAZ as the timing

artifact. As a general condition, the artifact arises when data is collected in-

frequently over a short period of time on an outcome variable that is itself

a function of age. After providing the necessary background (Section 2), I

formalize the econometric problem in the context of estimating cohort deter-

minants of HAZ in the DHS, and interpret the bias in an omitted variables

framework (Section 3). I consider two means of eliminating the bias: flexible

specification of the HAZ-age profile, and identification based on within-cohort

variation. Choice of strategy by the practitioner will depend primarily on the

nature of the data the researcher is able to bring to bear on the question, but

in general within-cohort estimates are preferable.
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I then demonstrate the artifact and bias empirically in two environments

(Section 4): estimating the effects of month of birth in Bangladesh and GDP

per capita in year of birth in Zimbabwe. In the month of birth example, a

regression with no control for age that ignores the relationship between month

of birth and age-at-measurement estimates the peak-to-trough difference in

seasonal effects at a statistically significant .245 standard deviations (p = .017

). A more flexible model that specifies a spline control across age estimates a

statistically insignificant peak-to-trough difference of .131 standard deviations

(p = .414 )1, a decrease in magnitude of about 45%. In the GDP regressions,

moving from no control for age to a spline specification reduces the implied

effect of a 10% increase in GDP from .11 standard deviations to .03.

Following the empirical examples, I present results from a placebo-type

Monte Carlo exercise simulating a “random weather shock” on data from Peru

(Section 5). I find that cohort and region fixed-effects estimators that simul-

taneously harness geographic and temporal variation can fully purge the bias,

but that estimators relying purely on temporal variation and flexible paramet-

ric specifications of the HAZ-age profile remain mildly biased.

The empirical and simulated exercises also provide evidence that DHS

recommended standard error calculations, which account only for survey sam-

pling and weighting (Madise et al., 2003), produce standard errors that tend

to over-reject a true null hypothesis when estimating cohort effects2. Sug-

gestively, between 40% and 80% of other countries’ GDP time-series appear

significantly correlated with the height of Zimbabwean children at the 95%

1P-values are for F-stats testing Feb-Dec point estimates jointly 0 using DHS recom-
mended inference accounting for weighting, stratification and cluster sampling.

2The simulation design and statistical theory closely follow Bertrand et al. (2004), which
investigates standard error properties using the Current Population Survey in the United
States.
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level when DHS recommended standard errors are employed. These “rejection

rates” decrease to between .03 and .09 when more conservative wild cluster-

t bootstrap procedures are used to determine statistical significance. In the

Monte Carlo environment, where rejection rates of .05 can be known to be

expected, DHS standard error estimates lead to rejection rates of around .25

at 95% confidence. Alternative strategies that rely on cluster-robust analytic

methods yield more appropriate rejection rates of around .08.

2 Background

Early life and in utero exposure to environmental and economic stresses has

lasting effects on human capital development (Almond and Currie (2011),

Uauy et al. (2011)). However, the mechanisms by which these early life condi-

tions leave their mark are not well understood (Rasmussen, 2001). By tracking

persistent birth cohort effects through all stages of life, researchers hope to

flesh out the biological and socioeconomic mechanics behind the correlations

between early life environment and later life economic success (Glewwe and

Miguel, 2008). Methodologically, this literature has focused on accounting

for important behavioral considerations like endogenous fertility, unobserved

household characteristics, and/or non-random mortality (Strauss and Thomas

(1995) ; Pitt (1997)). Previous research using the DHS has also mentioned

the difficulty in effectively controlling for the HAZ-age profile (e.g. Paxson

and Schady (2005), Agüero and Valdivia (2010)), though no prior work has

provided a formal analysis of the problem.

This paper focuses on HAZ, an age- and gender-normalized measure of

child height given in units of standard deviations and relative to the median

age- and gender-conditional height distribution of a well-nourished, healthy



On the Use and Misuse of HAZ in the DHS 5

population of children. HAZ is of particular interest because it both captures

the long-term cumulative effects of health throughout childhood and is known

to be correlated with later life outcomes (Dewey and Begum (2011), Hoddinott

et al. (2008)). If in utero shocks lead to permanent health effects, they should

be measurable later in life via HAZ. In addition to the examples I investigate3,

it has been used to estimate the effects of early life exposure to crop failure

(Akresh et al., 2011), violence (Akresh et al., 2012), access to health facilities

(Valdivia (2002)), agricultural price shocks (Cogneau and Jedwab (2012), and

a number of other birth cohort HAZ determinants.

HAZ is often described as “age-adjusted height”4. However, age may

be the single best predictor of HAZ available for children in less developed

countries. Figure 1 shows the HAZ-age profile for the three countries I analyze

here - Bangladesh, Zimbabwe and Peru - with mean HAZ plotted across child

age in months. In the first two years of life children in Bangladesh lose about

1.5 standard deviations of HAZ. By way of comparison, Bangladeshi children

born to households in the highest asset index quintile are about 1 standard

deviation taller than those born to parents in the lowest quintile. Bangladeshi

children with mothers in the tallest height quintile are on average 1.1 standard

deviations taller than those with mothers in the lowest quintile. HAZ as a

measure of child health in developing countries may be “adjusted for age” in

some sense, but it is also very strongly determined by age.

The DHS are natural datasets for investigating cohort determinants of

HAZ. As of 2010, standard DHS surveys had been conducted 236 times in 84

3See Lokshin and Radyakin (2012), Agüero and Valdivia (2010) and Pörtner (2010) for
papers examining month of birth, GDP per capita and weather shocks respectively.

4This analysis uses the 2006 WHO standards for HAZ, computed using the Stata package
“haz06” and variables for age, height, and gender. I have also run most analyses using
the previously favored NCHS/FELS/CDC standards. Choice of standardization does not
qualitatively affect results.
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countries, with 196 of the surveys similar to those analyzed here (Fabic et al.,

2012). The costs of continual demographic surveillance are high, and so for

most of the past two decades surveys have been implemented in participating

countries only every four to five years, conducted over a period of just a few

months. Continuity in cohorts between surveys is achieved by recording data

on all children under the age of 5 found in sample households.

Use of the DHS has increased steadily. Fabic et al. (2012) finds 1177

journal articles published using DHS data between 1985 and 2010, and this

count relies only on articles found on the measureDHS website and on PubMed.

The rate at which articles using DHS data are published is also increasing,

from less than 50 per year in 2000 to almost 150 per year in 2010. A little over

half of these publications dealt with maternal and child health in general, and

by 2010 there were around 25 papers per year being published on nutritional

deficiencies, where the primary outcome is likely to be HAZ or some other

anthropometric outcome.

3 Econometric Demonstration

This paper is focused on estimating the effects of birth cohort regressors on

HAZ, but the econometric problem is not restricted to the particular outcome

or dataset. Three ingredients are required for the timing artifact to bias re-

gression estimates: 1) the data being analyzed comes from measurements of

subjects taken over a short period of time at infrequent intervals; 2) the out-

come variable of interest must be in part determined by the subjects’ ages;

and 3) the covariate of interest must be measured in relation to the subjects’

birth cohorts, for example a birth year or birth quarter aggregate variable.

The data collection method (1) ensures that cohort and age-at-measurement
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are mechanically related in a manner determined by the dates on which the

measurements were taken and the ages of the population of interest. The

outcome-age profile (2) translates this age-cohort relationship into a spurious

outcome-cohort relationship - the timing artifact. When estimating the effects

of some cohort level variable (3), failure to adequately control for the outcome-

age profile can allow residual, spurious variation in cohort HAZ (induced by

the timing artifact) to induce an omitted variables bias on regression estimates.

Intuitively, the least squares machinery associates the spurious timing artifact

variation in HAZ with the time series variation in the birth cohort variable of

interest. This problem is particularly worrisome when there are only a small

number of cohorts (and thus no law of large numbers for “randomization”

across cohorts) and/or there is temporal serial-correlation in the time series of

the covariate of interest (since the spurious time series component of cohort

HAZ induced by the timing artifact is also serially-correlated across time).

3.1 Intuition Using Month of Birth

The most basic form of the econometric problem is to estimate the effect of

a birth cohort variable of interest βT on some partially age-determined out-

come Y, when data for estimating βT comes from a random cross-section of

the population of interest, and measurements are taken simultaneously and in-

stantaneously on all sample subjects. Suppose real world data were generated

in the following manner:

Yia = X ′iaβx + βT ∗ Ta + f(age) + εia (1)

Y, for individual i of age a, is determined by some set of covariates X, a

covariate of interest (or treatment) T, the subject’s age at measurement, and
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an iid error term ε. T is subscripted by ‘a’ because it is an aggregate measure

common to some aspect of birth cohort, and in this framework cohort and age

are perfectly collinear. I choose to subscript using a instead of c to emphasize

that Y is partially a function of age, via f(), which is not restricted to be

well behaved in any way. This stylized model is analogous to an empirical

environment where one round of the DHS is employed, and the fact that the

survey is conducted over several months is abstracted away.

3.1.1 Timing Artifact and Month of Birth

The first task in linking the timing artifact to estimates of βT is to understand

the relationship between T and age-at-measurement in the data. To make this

relationship clear with an example, suppose T is a vector of dummy variables

for month of birth. The mechanical relationship between age-at-measurement

and month of birth makes the problem somewhat unique, but it also makes

the timing artifact visible in a way that can be obscured once an additional

layer of variation is introduced.

Assume for the moment that the survey in question was taken on January

1, 2000, at 12:01am, and that, like the DHS, it takes as a population of interest

children under the age of 5 (all children born on or after January 1, 1995). In

this case, all sample children who were born in December were measured at

ages 1 month (born December 1999), 1 year 1 month (born December 1998),

2 years 1 month (born December 1997), etc. Similarly, all children born in

June were measured at the ages of 6 months (born June 1999), 1 year and

6 months (born June 1998), etc. Because younger children have higher HAZ

than older children (due to the HAZ-age profile), December-born children are

not just younger, but also have higher HAZ than June-born children. To see
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this graphically, consider Figure 1. In this setting, all children at the furthest

left end of the graph would be December-born children. Six months to the

right would be June-born children, who were measured at 6 months old and

thus have lower mean HAZ than the December children who were measured at

1 month old. The same pattern repeats for children aged 1 year and 1 month

(December-born) compared to children aged 1 year and 6 months (June-born),

and again for ages of 2, 3 and 4 years, though for the older ages the exact trend

is less visually apparent as the HAZ-age profile flattens5. Had the survey been

conducted in summer, the reverse would be true.

Although this stylized environment represents only a single survey taken

at a single point in time, the problem is easily generalized to include multiple

survey rounds taken over several months each and several years apart. The

left panel of Figure 2 shows survey timing in Bangladesh for four contiguous

survey rounds, with the the year of the survey on the Y-axis and the months

of the survey window (the months in which measurements were taken) plotted

on the X-axis. Early rounds (1996 & 2000) were conducted mostly in winter,

while the later rounds (2004 & 2007) were conducted in spring and summer.

On aggregate, then, children born in late fall and winter were measured at

younger ages than children born in spring. This is shown in the right panel of

the figure, which is a bar graph depicting mean age-at-measurement by month

of birth.

The effect of this imbalance of age across birth months on HAZ is repre-

sented in the top panel of Figure 3. This figure overlays a line graph of mean

HAZ by birth month on the age-at-measurement bar graph shown in Figure 2.

5Even for 3 and 4 year olds, children are losing HAZ within any age-in-years bin. This is
likely a result of both the standardizing process (de Onis et al., 2004) and age misreporting
(Schoumaker, 2009), and it can be seen in Figure 6 which plots the estimated HAZ-age
profile from a spline function with separate intercepts at round age in years.



On the Use and Misuse of HAZ in the DHS 10

The sinusoidal shape of the line graph strongly resembles the canonical season

of birth graph. But the true relationship is clear from the bar graph: higher

HAZ is apparent in months where children born in that month were measured

at younger ages, and these months are the months immediately preceding the

survey timing. An even more compelling example is shown in the bottom two

panels. They show the same graph but with the sample restricted to children

measured in either February (left panel) or November (right panel), and lim-

ited to the 1996 and 2000 survey rounds which both ran roughly November

(’94/’99) to February (’96/’00). The February graph looks the same as the

November graph shifted four months forward. The entire magnitude of the

apparent birth month seasonality in child HAZ outcomes can be explained

by the survey timing induced differential in age-at-measurement across birth

months.

3.1.2 Bias

The correlation between HAZ and month of birth described above is an uncon-

ditional correlation. If we can fully control for the “natural” loss of HAZ over

age, estimates of βT should be unbiased. Common strategies to account for the

HAZ-age profile include linear or polynomial specifications in age or dummy

variables for age in months. However, misspecification of the HAZ-age profile

can induce bias in the same manner as non-specification can. To formalize the

problem econometrically, suppose that the researcher specifies a model of the

following form using data generated by Equation 1, where g(agea; γ) is some

parametric specification of f(age):

Yia = X ′iaβx + βT ∗ Ta + g(agea; γ) + ηia (2)
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Unbiased estimation of Equation 2 requires that the error term η is un-

correlated with T. However, in the presence of misspecification of g() such

that g() does not fully control for f(), analysis of the underlying data gen-

erating process shows this to be an unreasonable assumption. Returning to

Equation 1, I add and subtract g(), producing:

Yia = X ′iaβx + βT ∗ Ta + g(agea; γ) + [f(age) − g(agea; γ)] + εia (3)

Define µa = f(age)−g(agea; γ), the age-invariant systematic error in the

estimate of f() across age. Since both f() and g() are functions only of age, µa

is then also solely a function of age and all subjects with the same age have the

same value of µ. While η in the estimating equation was posited as being iid

(as being ε), this exercise allows us to decompose η into two components: ε, the

real-world iid error, and µ, the model misspecification error component that

is the age-conditional difference between f() and g(). Plugging this definition

of η back into Equation 2, we see that the equation the researcher ought to be

estimating is:

Yia = X ′iaβx + βT ∗ Ta + g(agea; γ) + µa + εia (4)

To simplify the analysis, assume that f() is a linear combination of some

set of age-transformations (age, its square, discontinuities, etc.), and that g()

does not contain one or more of these transformations. µ can now be under-

stood as an omitted variable in the original specification of Equation 2. As

the classical demonstration of omitted variables bias shows6, coefficient esti-

6see Angrist and Pischke (2008) pages 59-61 for proof and discussion.
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mates on any variables included in the regression that are correlated with µ

will be biased. Such a correlation does not require a particularly anomalous

situation. In cases where f() is smooth and g() is specified to be smooth, µ

will be smooth, and thus serially-correlated across age, and thus T and µ will

likely move together (or against each other) in one fashion or another over at

least some periods of time.

3.2 Two Strategies for Unbiased Estimation

In this subsection I discuss two approaches to purging regression estimates of

timing artifact-induced bias. The choice of strategy by the researcher will de-

pend largely on the types of identifying variation in the birth cohort variable

the researcher can bring to bear on the problem. The first strategy is directly

implied by the discussion above and the framing of the omitted variables bias

interpretation: minimize the potential impact of µ through flexible specifica-

tion of g(). This turns out, for reasons discussed in the following section, to

be a more problematic approach than it first appears.

The second strategy hinges on the realization that model misspecification

itself is not always problematic, even model misspecification that is invariant

across age. The problem arises not only because µ is age-invariant, but also

because age is correlated with T. In the presence of within-cohort variation

in T, such as regional or subject-level quasi-experimental variation, it may

be possible to separate out the cohort/age effect from the effect of T within

each cohort, and thus achieve identification based on assumptions about the

distribution of age (and hence the distribution of µ), within cohort, across T.
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3.2.1 Flexible Specification of g()

One way to visualize the timing artifact is to plot out the HAZ “time-series”

produced using DHS data by collapsing mean HAZ by date of birth. I show this

in Figure 4. In the left panel I graph mean HAZ by birth date (aggregated

to birth month), and in the right panel I provide the same graph disaggre-

gated by survey round. While the left panel produces a graph that looks like

a plausible, even if oddly sinusoidal, time-series, the right panel reveals the

true dynamic. Most of the large variation seen in the aggregate time series is

actually caused by overlapping survey windows. When the data is disaggre-

gated, the graph appears in a more interpretable form - as the HAZ-age profile

repeating (backwards) over time.

Figure 4 also raises a new modeling concern, the changing shape of this

profile over time. To show this more clearly, Figure 5 overlays the sample

mean HAZ-age profile from the first (1996) and last (2007) Bangladesh survey

rounds. Over time, children are losing HAZ less rapidly during the first few

years of life. This secular improvement in child-health affects both the shape

and the level of the HAZ-age profile across survey rounds. Any attempt to

absorb f() via g() must contend not only with the shape of the HAZ-age profile

over age, but with the secular shifting of the HAZ-age profile over time.

To formalize these considerations, suppose data in the real world were

generated in the following form, and gathered from a repeated cross section

of S survey rounds, which are now each taken over several months, but taken

several years apart:

Yiacs = X ′iacsβx + βT ∗ Tc + f(agea, birthdatec) + εiacs (5)

Y is determined for individual i of age a born into cohort c and surveyed
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(measured) in round s. The incorporation of multiple survey rounds through

the inclusion of a more refined timing-index is the first important difference

between this model and the stylized model discussed above. The second dif-

ference is that f() is no longer conceived as simply a function of age but also

as a function of birthdate, to capture the changes in the HAZ-age profile over

time.

Ignoring the shifts in the HAZ-age profile over time will generate a second

type of model misspecification that may also induce a correlation between T

and µ. Suppose that secular improvements in child health are raising the

HAZ-age profile over time and that g() is specified as static. µ now becomes a

function of both age and time, the model misspecification associated with g()

improperly fitting the shape of the HAZ-age profile (µ in the stylized model),

as well as the systematic error that is generated across survey rounds caused

by the failure to account for the level changes over time. If not just the level

but the shape of the profile is changing over time proper specification of g()

becomes even more difficult.

An obvious assumption that would allow the researcher to identify βT is

that f() is separable into f1(age) and f2(birthdate), the assumption underlying

the inclusion of both flexible controls for age and a set of secular calendar-time

controls. These two options underlie the bulk of the previous empirical work

referenced in this paper.

A second option is to assume that one can directly model the changes

in f() over time. For example, one could specify a spline function that shifts

parametrically over time with different changes in the slopes of the spline

segments for different age groups. Since very young children have HAZ much

closer to the reference population median, there is little reason to believe that

the mean HAZ of 1 month olds is likely to increase rapidly due to some secular
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force. However, secular health improvements are quite likely to slow the loss

of HAZ over the first few years of life.

3.2.2 Within-Cohort Variation in T

The second strategy for purging estimates of timing-artifact induced bias is

to accept the problem of model misspecification but to specify the model in

such a way that µ becomes orthogonal to T. In the environments described

above, all children born at the same time had the same value of T. This forced

identification of βT to rely on assumptions about the shape of f() and/or its

movement over time. However, it is often the case that the researcher faces a

problem where within-cohort variation in T is available or such variation can

be constructed in some manner by bringing more refined data to the problem.

Suppose data were generated in the following form:

Yiacrs = X ′iacrsβx + βT ∗ Tcr + f(agea, birthdatec) + εiacrs (6)

This process is exactly the same as that described by Equation 5 except

for the inclusion of subscript r denoting region of birth, and the fact that T

now varies within birth cohort (across regions). In this situation a cohort and

region fixed effects model can be specified. The cohort fixed effects are used to

assure the similarity of the distribution of child ages between treatment and

control. They are not functioning as a specification of g(), since the magnitude

of µ is not a concern and the fit of the model to any individual child is not

important. They are functioning instead of a specification of g(), rendering it

unnecessary by exploiting variation such that µ becomes uncorrelated with T.
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3.3 Inference

The bulk of this paper is concerned with the question of model-misspecification

bias in estimates of β̂T , but the question of statistical inference is also im-

portant. Most work on standard error calculations and inference properties

using the DHS has focused on accounting for survey design: sample selection

(stratification and clustering) and population-probability weighting. Madise

et al. (2003) demonstrates that failure to account for survey design can lead

to greatly underestimated standard error estimates, giving researchers false

confidence in the statistical significance of their results.

Madise et al. (2003) focuses on estimating standard errors for the effects

of child, maternal and socioeconomic variables on child nutritional status.

That context is different in theoretically important ways from the context of

estimating standard errors for the effects of birth cohort aggregate variables.

In this environment there is likely to be strong serial correlation in the regressor

of interest within birth cohort or region. Bertrand et al. (2004) demonstrates

that ignoring such serial correlation can lead to standard error estimates that

are much too small.

Serial correlation is usually addressed spatially by clustering on the

“cross-sectional” variable, in this case region. This is the environment in

which Bertrand et al. (2004) and Cameron et al. (2008) operate. But in the

context of birth cohort aggregate variables, the obvious serial correlation in

the regressor of interest is temporal. I thus investigate both temporal and spa-

tial correlation, “clustering” on either cohort or region groupings. Since the

number of cohorts is generally small (less than 40), and since cluster-robust

analytic estimators only converge in probability to the true standard error

as the number of clusters goes to infinity, I follow Cameron et al. (2008) in
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conducting a wild cluster-t bootstrap procedure to compute p-values when

clustering on cohort or region is proper.

4 Empirical Examples

In this section I discuss two empirical contexts in which the timing artifact

can induce bias on regression estimates of cohort variables. The first example,

partially discussed in Section 3, is the effect of month of birth on HAZ. The

second is the effect of GDP per capita in year of birth. Both examples demon-

strate the fragility of point estimates to specification of g(age, birthdate), and

in both cases the point estimates attenuate towards zero as the specification

of g() becomes more flexible. The GDP example also lends itself nicely to

investigation of the inference properties of various statistical significance esti-

mators.

4.1 Data

In each empirical exercise, and for the data on which the placebo-test Monte

Carlo simulations are run, I use four waves of DHS data from three countries,

one country for each exercise - Bangladesh (month of birth) and Zimbabwe

(GDP per capita in birth year) for the empirical examples, and Peru for the

simulation exercise (weather shocks). All surveys were conducted between

1992 and 2011 (International, 2011). I aggregate all birthdates to month and

year. Sample weights are re-normalized so that each survey is weighted equally,

with relative sampling probability preserved within survey round. Results are

robust to use of original DHS weights or no weights at all. Specifics of the

sample selection and survey design are provided in Appendix A.
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Table 1 displays unweighted summary statistics for the three example

countries. Child HAZ is lowest in Bangladesh, where the mean HAZ hovers

around the -2 standard deviations “stunting” level used internationally as a

mark of moderate, chronic malnutrition. Children in Peru and Zimbabwe have

slightly better HAZ measures, but remain more than a full standard deviation

below the reference population of well nourished children. These numbers are

consistent with many countries that face endemic disease and chronic nutri-

tional shortfalls. Maternal age, education and height, and urban/rural com-

position are also consistent with much of the developing world (Ayad et al.,

1997).

The covariates shown here, along with region dummies, constitute the

set of X covariates used in the regressions that follow. Maternal education is

entered in regressions as a set of five dummy variables7. Continuous variables

other than child age and date of birth are entered into regressions linearly.

Many papers that analyze child HAZ outcomes employ a much larger vector

of covariates. I employ a sparse set to maintain sample size and increase

transparency. Inclusion of larger covariate sets makes no qualitative difference

to the results presented.

4.2 Month of Birth in Bangladesh

The first empirical question is whether or not the theoretical bias discussed in

Section 3 actually affects point estimates to a meaningful degree after control-

ling for age. To determine the potential magnitude of the bias in an empirical

setting, and to test the ability of increasingly flexible specifications of g() to

7These are no education, primary school, secondary school, higher education, and a
dummy for unknown educational status. Data definitions are provided by International
(2012)
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purge the bias, I estimate month of birth effects using data from Bangladesh.

In this environment the timing artifact is likely to be quite strong since there

is no mitigating factor between cohort and the regressor of interest, in the

sense that we are not estimating something that varies by month of birth, but

the actual effect of the month of birth itself. Beyond providing an intuitive

environment for examining timing artifact-induced bias, month of birth has

been shown to be a contributing determinant to all sorts of later-life outcomes,

and various socio-biological mechanisms have been invoked to explain the cor-

relation8. Other data artifacts can also induce the appearance of some month

of birth effects9.

4.2.1 Month of Birth: Estimation

The estimating equation for month of birth, adapted from Equation 5 with

month of birth replacing T and cohort (the interaction of month and year of

birth) now omitted and subsumed by the birth month dummies, survey round

dummies and age at measurement controls, is of the form:

HAZiams = Xiamsβx +MOBm + g(agea; γ) + λs + ηiams (7)

The model conceives f(age, birthdate) as separable: the shape of f1(age)

is assumed to be constant across time, varying only in level shifts from survey

to survey as captured by λ (the specification of f2(birthdate)). I specify several

8Angrist and Krueger (1991) and Musch and Grondin (2001) use institutional explana-
tions involving age-at-entry, while Buckles and Hungerman (2008) emphasize a behavioral
mechanism of selection into birth timing. The development economics literature tends to
focus on biological explanations, e.g. Lokshin and Radyakin (2012), which explains seasonal
birth effects in India by in utero exposure to the monsoon rains

9Linn et al. (2011) show that estimating seasonal effects from data collected on births
occurring over a fixed period of time can induce the appearance of seasonal differences
in birthweight. Lewis (1989) shows that age-at-diagnosis can explain some seasonal birth
patterns in schizophrenia.
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forms of g1(age; γ): linear, quadratic, cubic and spline.

My base spline in this context is linear between knots, with the knots

placed at round age-in-years (12 months, 24 months, 36 months and 48 months

of age). Each knot is also allowed its own intercept, which is common across

survey rounds, to account for standardization and age-reporting issues at

round ages in years10. The fit of the spline is shown in Figure 6, which graphs

out the estimated mean HAZ-age profile for Bangladesh from a regression of

HAZ on the spline described with only the survey dummies also included in

the regression. The left panel shows the fit of the spline (the line graph) on a

scatter plot of mean HAZ across age, and the right panel shows the fit across

birthdate. It is also possible to specify more flexible spline functions that di-

rectly estimate f(age, birthdate). The approach I take is to allow the slopes of

the spline to shift parametrically or non-parametrically over time.

4.2.2 Month of Birth: Results

Figure 7 plots out the point estimates from four base specifications of g(age; γ)

- no age control, linear, quadratic, and the base spline. As the flexibility

of the specification increases, the point estimates tilt towards 0 from both

directions. The peak-to-trough difference within specification reduces from

.245 without age controls, to .188 and .163 for the linear and quadratic

specifications, to .131 with the base spline controls. F-stats and P-values for

Feb-Dec jointly 0 and accounting for survey design are reported in the legend.

All continuous specifications return statistically significant results (p < .1).

The spline specification, however, returns statistically insignificant results (p =

10Since this specification is not continuous across age (due to the separate intercepts for
each age-in-years), it may be more appropriately called a “piecewise linear” specification,
with cubic splines called “piecewise polynomial”. I use the term “spline” for brevity.
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.414).

Figure 7 shows that flexible specification of g(age; γ) can mitigate timing

artifact induced bias. Whether it eliminates the bias cannot be determined

from this exercise. The separable model may be incapable of fully absorb-

ing f(), or it may be that the secular trend is improperly modeled as survey

round dummies, or it may be that the remaining seasonal pattern is real.

A priori it is difficult to argue for one particular specification of the secular

time trend or movement of the spline over another. It is possible, though, to

test whether or not in this particular case some non-separable specification of

g(age, birthdate; γ) can make the effect disappear completely.

To test models that directly specify g(age, birthdate; γ) I run a further

series of regressions, collapsing month of birth into quarter of birth. The

coarser definition of seasonality allows me to worry less about model flexibility

compromising identification, and it simultaneously smooths out the timing

artifact effect, giving the model the best chance of finding no effect. In Table 2,

I show the results of regressions of HAZ on quarter of birth, the vector X

of covariates, and several specifications of g() that more explicitly model its

movement over time.

Column 1 shows results using a simple linear in age specification includ-

ing survey round fixed effects, while Column 2 adds in quadratic and cubic

age adjustments. Column 3 shows the cubic spline results with a linear trend

in birthdate, and Column 4 uses the same spline but adds a quadratic time

trend in birthdate. Column 5 explicitly models g(age, birthdate; γ), allowing

each spline segment slope to follow a linear trend over time, while using survey

round dummies to adjust for level changes in the HAZ-age profile. Column 6

allows the spline to have independently estimated slopes for each survey round

and includes survey dummies. The bottom row of the table displays F-stats
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and p-values testing the null hypothesis that quarters 2-4 are jointly 0 (with

quarter 1 being omitted and set to 0), using standard errors accounting for

survey design.

The primary row of interest is the row for the effect of Quarter 4 birth, as

the point estimates increase in each quarter of birth and the highest quarter

shows the effect of specification most clearly. Moving across Table 2 from

left to right, and thus increasing the flexibility of the specification of g(), the

coefficient on the Quarter 4 dummy drops by about 40%, from .1 standard

deviations to .06. The point estimate on Quarter 4 is statistically significant

across all specifications, but the F-stat testing Quarters 2-4 jointly 0 is only

rejected at the 10% level for the first four columns. When the secular trend is

allowed to be quadratic, or when the spline is allowed to parametrically bend

over time, the F-stat indicates a failure to reject the null hypothesis of no

effect. No specification makes the effect completely disappear, but increasing

the flexibility of g() consistently dampens the magnitude.

The relationship between month of birth and age creates a relationship

between the covariate of interest and HAZ that is mechanically guaranteed.

In the next section I present an example that investigates a more conventional

time-series/cohort model.

4.3 GDP per Capita in Birth Year in Zimbabwe

The DHS is also a natural dataset to investigate the in utero and very early

life effects of the business cycle on child health, e.g. Paxson and Schady

(2005) and Agüero and Valdivia (2010) on Peru, Subramanyam et al. (2011)

on India and Pongou et al. (2006) on Cameroon. The economic growth and

HAZ literature is also the first that this author knows of to wrestle with the
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econometric problem of separating out the effects of the HAZ-age profile from

the time-series trends in the covariate of interest.11.

Figure 8 demonstrates the timing artifact graphically in the context of

a GDP/HAZ time-series analysis. Using data from Zimbabwe, I overlay the

GDP per capita time series on a disaggregated HAZ time-series similar to

Figure 4 (which uses Bangladeshi data). The obvious problem is that any

spurious correlation between the changes in GDP per capita and where the

peaks/troughs of the HAZ-age profile hit in calendar time will cause bias in

regression estimates when g() is not properly specified.

4.3.1 GDP: Estimation

The model I specify to estimate the effects of (log) GDP per capita in year of

birth, again derived from Equation 5, is:

HAZiac = Xiacβx+βgdp∗LogGDPc+g1(agea; γa)+g2(birthdatec; γc)+ηiac (8)

This specification excludes survey-round effects, instead parametrically

modeling movements in the HAZ-age profile over time. Since identifying vari-

ation necessarily comes from temporal changes in GDP, the specification of

both g1(age; γa) and g2(birthdate; γc) are important.

To test the sensitivity of this model to specification of g1(age; γa) I test

five specifications: unconditional on age, linear, quadratic, spline, and dummy

variables for age-in-months. g2() is specified as linear or quadratic. Identifying

11Paxson and Schady (2005) is the first to discuss the problem as one in which the object
of interest is the entire HAZ-age profile. It is informative that, instead of regressing HAZ
on GDP and estimating an elasticity, it simply compares HAZ-age profiles across survey
rounds, and conceives of the problem as identifying changes in the shape of the HAZ-age
profile over time
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variation comes across time, and in the continuous specifications of g() that

includes both within-survey time variation (e.g. comparing children surveyed

in 1996 and born in 1993 and 1994) along with variation in time across surveys

(e.g. comparing the 1993 cohort with the 2005 cohort surveyed later). As the

specification of g1() becomes more flexible, though, the models rely increasingly

on between-survey variation, up to the point of the dummy variables for age in

months which identify almost exclusively off between-survey variation. There

are two concerns, though, with the dummy variable specification: first, the

problem of implicitly comparing December-born and January-born children of

the same age from the same survey who faced essentially the same economic

conditions in utero but would have different values of GDP per capita in their

birth year; and second the fact that, for any given age, there are only (S =)

4 values of GDP per capita identifying the effect. The increasingly flexible

estimates utilize less and less of the available variation in GDP per capita.

An obvious compromise between a polynomial specification and the non-

parametric specification is again a spline in age. Similar to the previous section,

I set the spline to have internal knots at round ages in years with separate

intercepts at each knot. Unlike in the month of birth example, here I can

safely specify a cubic spline to allow the model to fit the non-linearity of the

HAZ-age profile as well as possible.

4.3.2 GDP: Results

In Table 3 I present the results from a regression of HAZ on the same covariates

used previously, a linear or quadratic trend in birthdate, and the specifications

of g1(age; γ) discussed above. The effect of the age controls is clear, the point

estimates dropping towards 0 with each increasingly flexible specification. The
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unconditional regression estimates that a 10% increase in GDP per capita in

birth year is associated with a .1 standard deviation increase in child height.

Linear specifications only reduce the implied effect to about .085 standard

deviations. The addition of age squared reduces the point estimate by almost

another half, to .048 standard deviations. The spline and non-parametric

specifications, my most flexible models, return estimated effects of around .03

standard deviations, 70% smaller than the estimate from the unconditional

specification, and just over 35% less than the estimate from the quadratic

specification.

The inclusion of quadratic controls for the secular trend leads to larger

point estimates under the spline and non-parametric specifications. Point

estimates in columns 6 and 7 are about 35% larger than the point estimates

for the same specifications of g1() with linearly specified trends. One concern

with the validity of these estimates is that, given the underlying data, there will

always be a large increase in HAZ toward the very end of the time-series, since

these cohorts are always composed of very young children. Thus, it may be

that using a quadratic specification is unwise as it will become to some degree

collinear with the HAZ-age profile at the far right end of the graph. This

concern may or may not explain the increase in point estimates, and I cannot

rule out the hypothesis that the quadratic specifications are improvements

over the linear specifications.

All estimates of the effects of GDP in birth year on HAZ are statistically

significant at the 95% level or lower when standard errors only accounting

for survey design are computed. As discussed in Section 3.3, these standard

errors do not account for serial-correlation in errors within cohort or region

but outside of sampling cluster.

To provide initial evidence as to whether or not choice of inference strat-
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egy can greatly affect our confidence level, I compute several alternative p-

values and display them in the bottom rows of Table 3. The first row, labeled

“DHS”, shows the p-value associated with the standard error estimates shown

beneath the point estimates. This can be considered a baseline p-value against

which to judge the alternatives. The second and third rows show p-values from

standard errors that employ cluster-robust analytic specifications that cluster

the data at the birth year-by-region level (210 clusters) and the survey-by-

region level (40 clusters) respectively. P-values are based on t-distributions

with degrees of freedom equal to the number of clusters minus 2. The bottom

two rows provide p-values from the wild cluster-t bootstraps that are clustered

on region and cohort separately12.

There is a great deal of dissonance between the estimated confidence

levels across inference strategies, particularly between the analytic and boot-

strap estimators. All analytic clustering strategies, save for the region-by-

survey clustering on the first dummy variable specification, return results that

are statistically significant at the 10% level. However, both bootstraps fail

to reject the null hypothesis at any standard confidence level for any of the

specifications save the non-parametric specification with a quadratic trend in

birthdate.

4.3.3 GDP: Informal Inference Test

The massive increase in the confidence interval (or, for the bootstraps, implied

confidence interval) as clusters are defined at higher levels raises the possibility

that the DHS recommended standard errors are inappropriately small. While

I more formally test these inference strategies in the next section, I first pose

12For these bootstraps I use 500 repetitions, but in the alternate-country GDP regressions
below I use only 300 bootstrap repetitions to save computational requirements.
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two questions to the data. First, how often would a random GDP per capita

time-series overlaid on the Zimbabwe DHS data generate results as extreme as

those found in the real regression? Second, how often would we reject the null

hypothesis of no effect when these placebo-GDPs are used? Neither of these

can be answered perfectly, but I can provide some evidence in the empirical

context.

Determining what, exactly, constitutes a placebo GDP time-series is dif-

ficult. As opposed to generating random GDP time-series, I take a less precise

but more intuitive approach. I address both questions by estimating the im-

plied effects of other country’s GDP per capita time series on the Zimbabwean

HAZ data. First, I take GDP per capita time-series data from the World

Bank online reference for 183 countries with data on GDP from 1990 through

201113. I then regress the Zimbabwe child height data on the GDPs of these

other countries, using the base spline specification with a linear time trend

and recording the point estimates and p-values.

Figure 9 graphs a kernel density plot of the GDP point estimates from

other country’s GDPs, and a dot for the estimated effect of Zimbabwe’s own

GDP. The vertical line shows the 95-th percentile of the distribution, and the

Zimbabwe point estimate is smaller than this level. Overall, the “real” point

estimate is less extreme (in terms of absolute value) than the point estimates

obtained using 42 of 183 alternate GDPs (about 23%). This number is similar

to the p-value obtained from the preferred birth year clustered boostrap p-

value (.188).

I then tabulate the rejection rates (5% level) and present them in Ta-

ble 4. Using DHS inference methods, I find rejection rates between .39 and .84

depending on specification, with the more flexible specifications producing the

13Data was collected from data.worldbank.org
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lower, but still too large, rejection rates. The cluster analytic standard errors

reject the null at rates between .2 and .6, again with the more flexible specifi-

cations of g() leading to lower rejection rates through the reduction of bias on

the coefficient estimate. Of particular interest, though, are the rejection rates

given by the wild cluster-t bootstraps that cluster on birth year, which reject

the null hypothesis at a rate of around .03 to .09.

The GDP per capita exercise demonstrates two things. First, the timing

artifact can bias results even when the right hand side variable of interest is

not mechanically related to age, only measured in relation to it - the value of

GDP per capita in birth year is associated with age-at-measurement, but it

need not be. Second, standard errors calculated only to account for survey

design may be too small. What is not clear from this exercise, or from the

preceding exercise using month of birth, is whether the flexible specification

of g() is fully purging the bias and whether or not any of the strategies for

estimating statistical precision produce reliable p-values.

5 Monte Carlo: “Weather Shocks” in Peru

This section presents a formal test of both proposed strategies for eliminating

timing artifact-induced bias, as well a test of the quality of various precision

estimators. To do this, I perform two Monte Carlo exercises based on data from

the Peruvian DHS, where a placebo shock with known effect of 0 is randomly

applied to children in some regions in each cohort but not to others. The use of

a “shock” indicator for a particularly severe exposure of some type or another is

common, and weather shocks exemplify the strand of the literature (del Ninno

and Lundberg (2005)). The Peruvian data is used because of the relatively
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large number of geographic regions provided in the data (25)14, sparing the

need to define my own geographic regions and allowing for easier replication.

5.1 Simulation Design and Estimation

The spatio-temporal fixed-effects model I consider in this context is derived

from Equation 6 but drops the age subscript since the model does not directly

specify g(). It takes the following form:

HAZircs = Xircsβx + βshock ∗ Shockrc + λc + γr + ηircs (9)

If regional differences in child HAZ are essentially level differences in the

HAZ-age profile, then, conditional on a dummy for region of birth, “control”

(shock = 0) children should generate a reasonable counterfactual mean HAZ

for children in their cohort in the “treated” (shock = 1) group. The additional

identifying assumption of importance for this model is the equivalence of age

distributions between treatment and control within cohort15.

This model is compared to models that directly specify g() and follow

Equation 8, but generalized to multiple regions. Identifying variation for these

models can be conceived in exactly the same way as in the GDP example, since

temporal, “within” variation is used to identify the coefficients. The variation

is just repeated R = number of regions times for each survey.

14There are only 13 regions in the 1992 data and 24 in 2000, but these same regions
appear in other survey rounds, so I include them all. Since all regions are very likely to
experience both “treatment” statuses in any given Monte Carlo repetition, this should not
pose a problem.

15In the context of the DHS, this is a more stringent assumption than it may seem. Some
cohorts are measured in two survey rounds, and thus a cohort of children could be measured
at either a very young age or a relatively old one. Thus, the assumption requires not only
within-survey-by-cohort equivalence in the distribution of child ages across treatment, but
also similar proportions of observations in the cohort taken from each survey round over T.



On the Use and Misuse of HAZ in the DHS 30

The baseline simulation works in the following manner. First, each

region-by-cohort cell is randomly assigned a shock value of 0 (control) or 1

(treatment) with equal probability. I then run three regressions on the placebo

treatment data. The first regression includes a linear specification of the HAZ-

age profile while the second includes the base cubic spline with internal knots

and intercepts at round age in years. Both regressions include a linear trend in

birthdate for g2(birthdate; γ). The third regression employs birth-year dummy

variables (as represented in Equation 9). I then repeat this procedure 500

times, reassigning the placebo treatment variable through each repetition and

saving the point estimates and p-values of β̂shock for each regression.

In the case of this fully random shock, none of these specifications should

return biased estimates in the mean of the repeated simulations. That is

because, by construction, there is no correlation between age-at-measurement

and the covariate of interest. A real test of the specifications must induce

a correlation between cohort and T, preferably in a manner that is likely to

occur in real world empirical investigations.

I induce the necessary correlation by increasing the probability of treat-

ment in a single cohort. Call this year a “drought year”, it is a year when the

shock hits more regions than in other years. The timing artifact will pressure

the point estimates on T higher if the drought year corresponds to cohorts

with high µ, and vice versa if µ is low for that cohort. I run the simulation

500 times treating the first cohort year as the drought year, and then repeat

the procedure for all other cohorts.
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5.2 Results: Independent Shocks

Figure 10 shows a kernel density estimation of the distribution of β̂shock for the

random (50-50) assignment of treatment status by region-cohort. As predicted,

all three estimators produce unbiased estimates of β̂shock. The spline and

fixed-effect models generate more precise estimates, likely driven by better

performance when unlikely draws induce some timing artifact bias in some

simulation repetitions.

The purely random placebo test demonstrates two things. First, it con-

firms the theoretical prediction that, when T is uncorrelated with age, the

timing artifact does not infect the data. Second, it provides an excellent envi-

ronment for testing the inference properties of the DHS recommended standard

errors that account for survey design, and an analytic clustering strategy that

accounts for serial correlation and heteroskedasticity. The particular form of

the placebo-test leads to a natural clustering level of region-by-cohort, the

level at which the shock is determined.

Through each replication of the placebo-test, I record whether or not the

model rejects the null hypothesis of no effect at the 95% level. Table 5 displays

the empirical rejection rates from the exercise. The linear specification using

DHS recommended inference rejects a true null hypothesis of zero effect over

40% of the time. That is, if a researcher studying the effects of a one year

drought used these models, they would find a statistically significant estimate

2 out of 5 times even if there was no real effect of drought, though only about

half of those estimates would be both significant and of the sign anticipated.

The spline and non-parametric specifications reject the true null about 30% of

the time, still a rate about 6 times too often. Clustering at the region-by-birth

year cell level greatly improves inference. All three specifications now reject
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at a rate around .08.

5.3 Results: “Drought Years”

Now I induce a correlation between the shock and age-at-measurement by

including in each simulation a “drought” year. If models misspecify g() in the

manner described in Section 3, the simulation should now induce a bias in

point estimates of β̂shock.

The results are represented in Figure 11. The X-axis shows year, which

refers to either year of drought (for the line graphs) or year of birth (for the

bar graph). The bar graphs display mean age-at-measurement for children

born in that year, with red bars indicating that measurements were taken in

that year. The short-dash red line shows the mean estimate of β̂shock when the

HAZ-age profile is specified as linear. As predicted, the correlation between

shock and cohort age induces bias in the improperly specified model. In the

worst case, this bias is about .03 standard deviations, a small but economically

significant amount, and that effect is generated from the addition of just a few

extra “treated” regions in the birth year.

The other two lines show mean estimates of β̂shock under the spline and

fixed-effect specifications. The red long-dashed line representing the spline

specification reveals the extent to which flexible specification can mitigate the

bias induced by the timing artifact, but the specification does not completely

purge the bias. The fixed-effect model, represented by the solid red line, stays

firmly centered on zero, indicating that the model produces unbiased estimates

regardless of survey- and shock-timing.

The relationship between the spline estimates and the linear estimates

demonstrates three further points: First, the spline estimates are fairly close
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to zero when the drought years hit cohorts that are not on the ends of the

sample birthdates or just before or after a survey has taken place. Second,

misspecification of g() is most problematic when the drought hit the youngest

cohort in a survey, showing the the discontinuity in the time-series at survey-

round breaks can be particularly problematic. Finally, increased flexibility of

g() need not always simply reduce bias, but it can actually reverse the sign of

the bias. The linear and spline estimates for the drought years near either end

of the time period show coefficients that are getting more negatively biased as

children grow younger (and thus are likely to have higher HAZ), opposite of

the prediction for specifications unconditional on age.

Table 6 provides a summary of the regression results for several years

in which the faux-drought induces large and small biases on the misspecified

models. For each model and drought year I display the mean point estimate

of β̂shock and the rejection rates from the DHS and region-by-cohort clustered

standard error calculations. 1996 is the drought year that induces the largest

bias. A linear specification yields a mean point estimate bias of around .03

standard deviations. The linear model rejects the true null hypothesis of no

effect at a rate of over .55 when using DHS recommended inference, and still

around .15 when clustering at the cohort-by-region level. The mildly biased

spline estimate and the unbiased fixed-effects estimate yield a rejection rate

of over .25 using the DHS inference, but the rejection rate when clustering by

cohort-region is down to between .06 and .09.

In general, the specifications that induce more bias tend to over-reject

more than the unbiased estimators, simply because the t-statistics increase as

the bias increases when the bias moves point estimates away from 0. Models

that cluster at region-by-cohort levels, though, fair better under all specifi-

cations than models using DHS standard inference. However, cohort-region
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clustering may still be too restrictive, since it fails to deal with the temporal

serial-correlation in T that was problematic in the GDP context. I do not

estimate the wild cluster-t bootstraps in this context due to the large com-

puting requirements, but they may be appropriate for researchers operating in

the spatio-temporal econometric environment when there is temporal serial-

correlation in T.

6 Conclusion

Estimates of cohort determinants of child health can be greatly biased when

the HAZ-age profile is not properly specified. The lesson to practitioners is

clear: if possible and relevant, bring within-cohort variation in the covariate

of interest to bear on the problem. If not, specify the HAZ-age profile as

flexibly as possible. Researchers using other anthropometric or child health

outcomes should examine the outcome-age profile before blindly specifying a

functional form for their regression equations, and they should examine the

movement of that profile over time when they are appending multiple rounds

of the DHS. Standard error estimates should account for serial correlation and

heteroskedasticity via analytic or bootstrap methods that cluster at higher

levels than those accounting only for survey design. The extent to which

these problems have led to the publishing of spurious results in the scientific

literature requires further investigation.

I conclude with a note about the interpretation of coefficient estimates.

In an OLS setting, the coefficient on the treatment variable is by definition

modeled as a level shift in the HAZ-age profile. This is likely not the way that

many inputs affect HAZ. Often times, it may be better to conceive of these

inputs as bending the HAZ-age profile. While I hope this paper will convince
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researchers to more carefully model the HAZ-age profile (and the outcome-age

profile in general when dealing with child health outcomes), I also hope that it

will spur new discussion about what exactly it is that we are trying to measure

when we estimate treatment effects on HAZ.
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or spurious. Université Catholique de Louvain (Belgium), Département des
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7 Figures and Tables
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Table 1: Sample Summary Statistics

Bangladesh Peru Zimbabwe
HAZ -1.970 -1.454 -1.298

Child Age 29.14 30.00 25.98

Child Female 0.495 0.496 0.501

Birth Year 1999.4 1996.5 2001.8

Maternal HAZ -220.5 -224.0 -64.41

Maternal Age 25.84 29.24 27.85

Secondary Ed. 0.298 0.484 0.533

Urban 0.263 0.517 0.239

N Surveys 4 4 4

Obs 21351 44205 13012
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Table 2: Quarter of Birth and HAZ - Bangladesh

(1) (2) (3) (4) (5) (6)
Linear Cubic Spline1 Spline2 Spline3 Spline4
b/se b/se b/se b/se b/se b/se

2nd Quarter 0.018 0.014 0.040 0.036 0.030 0.032
(0.03) (0.03) (0.03) (0.03) (0.03) (0.03)

3rd Quarter 0.059∗ 0.050∗ 0.061∗∗ 0.055∗ 0.046 0.046
(0.03) (0.03) (0.03) (0.03) (0.03) (0.03)

4th Quarter 0.104∗∗∗ 0.100∗∗∗ 0.070∗∗ 0.065∗∗ 0.060∗∗ 0.060∗∗

(0.03) (0.03) (0.03) (0.03) (0.03) (0.03)

Female 0.018 0.022 0.021 0.022 0.021 0.021
(0.02) (0.02) (0.02) (0.02) (0.02) (0.02)

Urban 0.200∗∗∗ 0.205∗∗∗ 0.214∗∗∗ 0.211∗∗∗ 0.209∗∗∗ 0.209∗∗∗

(0.03) (0.03) (0.03) (0.03) (0.03) (0.03)

Maternal Age 0.012∗∗∗ 0.012∗∗∗ 0.012∗∗∗ 0.012∗∗∗ 0.012∗∗∗ 0.012∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
Maternal HAZ 0.003∗∗∗ 0.003∗∗∗ 0.003∗∗∗ 0.003∗∗∗ 0.003∗∗∗ 0.003∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
r2 0.158 0.188 0.199 0.200 0.202 0.203
Fstat 5.206 4.938 2.366 2.020 1.652 1.648
Pval 0.001 0.002 0.069 0.109 0.176 0.176

Point estimates and (standard errors) account for sample clustering and weights.

All regressions also include region dummies and five dummmies for maternal education.
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Table 4: Rejection Rates of Placebo GDP Effects

DHS Cluster Bootstrap
Unconditional 0.841 0.590 0.0387

Linear 0.780 0.656 0.0884

Quadratic 0.473 0.311 0.0663

Spline 0.341 0.213 0.0387

NP 0.390 0.273 0.0552

Statistical significance determined at 95 percent level.

DHS refers to standard errors accounting for survey design.

Cluster uses SEs clustered at region by cohort level.

Bootstrap from wild cluster-t bootstraps clustered at cohort level.
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Table 5: Random Shocks Rejection Rates (.05 level)

Linear:

DHS 0.416

Cluster 0.0720

Spline:

DHS 0.292

Cluster 0.0780

FE

DHS 0.250

Cluster 0.0820

Clustered at region-by-cohort level
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Table 6: Drought Shocks Rejection Rates by Age Control (.05 level)

1988 1992 1996 2000 2004
Linear:

Beta (Linear) -0.00935 0.0119 0.0321 0.0181 0.00587
(0.00165) (0.00168) (0.00162) (0.00167) (0.00169)

Survey Design 0.406 0.412 0.548 0.430 0.390
(0.0220) (0.0220) (0.0223) (0.0222) (0.0218)

Region-Cohort 0.0700 0.0880 0.150 0.0980 0.0740
(0.0114) (0.0127) (0.0160) (0.0133) (0.0117)

Spline:

Beta (Spline) -0.00793 0.00198 0.00715 0.00111 0.00464
(0.00122) (0.00123) (0.00119) (0.00122) (0.00123)

Survey Design 0.282 0.262 0.260 0.268 0.274
(0.0201) (0.0197) (0.0196) (0.0198) (0.0200)

Region-Cohort 0.0680 0.0620 0.0620 0.0560 0.0540
(0.0113) (0.0108) (0.0108) (0.0103) (0.0101)

FE:

Beta (FE) 0.00142 0.000987 0.000435 0.00110 0.00140
(0.00128) (0.00129) (0.00130) (0.00127) (0.00129)

Survey Design 0.276 0.272 0.254 0.268 0.280
(0.0200) (0.0199) (0.0195) (0.0198) (0.0201)

Region-Cohort 0.0720 0.0800 0.0940 0.0700 0.0760
(0.0116) (0.0121) (0.0131) (0.0114) (0.0119)

Region-Cohort denotes clustering level

Standard Errors of Mean in parentheses

Columns refer to year with additional shocks
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A Sample Construction

All regression samples are constructed using the same selection procedures.
First, I append all four survey rounds of each country and drop all obser-
vations without height measurements, all children under the age of 1 month
and all observations where child birthdate is imputed (5 in Bangladesh, 21 in
Zimbabwe, and none in Peru). This leaves me with measurements on 22471
children in Bangladesh, 14524 in Zimbabwe and 46357 in Peru. Of these,
I drop 785 observations from Bangladesh, 1265 from Zimbabwe and 1243
from Peru for having invalid measurements or measurements resulting in an
HAZ score above 6 or below -6 standard deviations, which is the WHO defini-
tion of the range of valid HAZ scores and is common practice in the literature
(Borghi et al., 2006). Excluding children with missing covariate measurements
drops an additional 335 observations in Bangladesh, 247 in Zimbabwe and
909 in Peru. This leaves me with final sample sizes of: Bangladesh - 21351 ;
Zimbabwe - 13012 ; and Peru - 44205 .

The DHS sampling method is partly unique to each survey but usu-
ally follows a similar procedure in most years and countries. Geographic
regions are defined, and the country is stratified by region and urban/rural
status. Clusters are chosen randomly from each strata, and households are
sampled randomly (though with oversampling of some households) within clus-
ter, though sampling is not uniform across time within strata16. Households
are then assigned weights in order to make the weighted sample nationally
representative, and these weights are normalized to sum to the sample size.
All regressions in this work use re-normalized weights that sum to 1 within
each survey round, implicitly weighting each round equally. Using the original
DHS weights (which implicitly weights surveys by sample size), or using no
weights at all, has no qualitative impact on the analyses presented.

16The fact that regions are surveyed at different times does lead to questions about the
consistency of point estimates from region fixed effect models. The issue is not addressed
in this work. The Monte Carlo simulations in Section 5 give some evidence that any bias
induced by non-random sample timing across regions is likely to be of secondary concern
in cases of region by birth year treatment assignment, but the effect may be problematic in
other contexts


