Aggregating household level data [message #10394] |
Mon, 25 July 2016 06:16 |
Lukresha
Messages: 14 Registered: July 2016
|
Member |
|
|
Hello,
I would like to aggregate the household level data mv717 (occupation grouped) to cluster level data.
What is the recommended way of going about it as I have used this command:
collapse mv717, by( hv001)
and from the output (shown below) I do not know whether I should only focus on the whole numbers that are similar to the initial mv717 categories (shown below) or all the values in the output table are important.
tab mv717
(mean) |
mv717 | Freq. Percent Cum.
------------+-----------------------------------
0 | 40 4.29 4.29
.25 | 1 0.11 4.39
.2857143 | 1 0.11 4.50
.3 | 1 0.11 4.61
.3333333 | 2 0.21 4.82
.4444444 | 1 0.11 4.93
.5 | 3 0.32 5.25
.5714286 | 1 0.11 5.36
.6 | 1 0.11 5.47
.6666667 | 2 0.21 5.68
.7142857 | 1 0.11 5.79
.75 | 1 0.11 5.89
.8 | 2 0.21 6.11
.8571429 | 1 0.11 6.22
.8888889 | 1 0.11 6.32
.9230769 | 1 0.11 6.43
1 | 18 1.93 8.36
1.142857 | 4 0.43 8.79
1.222222 | 1 0.11 8.90
1.230769 | 1 0.11 9.00
1.25 | 2 0.21 9.22
1.272727 | 1 0.11 9.32
1.285714 | 1 0.11 9.43
1.307692 | 1 0.11 9.54
1.333333 | 7 0.75 10.29
1.428571 | 1 0.11 10.40
1.454545 | 1 0.11 10.50
1.5 | 3 0.32 10.83
1.555556 | 1 0.11 10.93
1.6 | 5 0.54 11.47
1.625 | 1 0.11 11.58
1.636364 | 1 0.11 11.68
1.684211 | 1 0.11 11.79
1.714286 | 1 0.11 11.90
1.75 | 1 0.11 12.00
1.777778 | 1 0.11 12.11
1.8 | 3 0.32 12.43
1.818182 | 2 0.21 12.65
1.833333 | 1 0.11 12.75
1.846154 | 2 0.21 12.97
1.857143 | 2 0.21 13.18
1.875 | 1 0.11 13.29
1.913043 | 1 0.11 13.40
1.928571 | 1 0.11 13.50
2 | 26 2.79 16.29
2.083333 | 1 0.11 16.40
2.086957 | 1 0.11 16.51
2.111111 | 1 0.11 16.61
2.117647 | 1 0.11 16.72
2.125 | 2 0.21 16.93
2.133333 | 1 0.11 17.04
2.142857 | 1 0.11 17.15
2.166667 | 2 0.21 17.36
2.181818 | 1 0.11 17.47
2.214286 | 1 0.11 17.58
2.222222 | 5 0.54 18.11
2.25 | 8 0.86 18.97
2.272727 | 2 0.21 19.19
2.285714 | 4 0.43 19.61
2.3 | 1 0.11 19.72
2.307692 | 1 0.11 19.83
2.333333 | 5 0.54 20.36
2.384615 | 1 0.11 20.47
2.4 | 6 0.64 21.11
2.409091 | 1 0.11 21.22
2.428571 | 4 0.43 21.65
2.444444 | 2 0.21 21.86
2.454545 | 1 0.11 21.97
2.466667 | 1 0.11 22.08
2.5 | 1 0.11 22.19
2.555556 | 1 0.11 22.29
2.571429 | 4 0.43 22.72
2.588235 | 1 0.11 22.83
2.6 | 2 0.21 23.04
2.615385 | 1 0.11 23.15
2.625 | 1 0.11 23.26
2.666667 | 13 1.39 24.65
2.714286 | 4 0.43 25.08
2.727273 | 1 0.11 25.19
2.75 | 1 0.11 25.29
2.777778 | 1 0.11 25.40
2.8 | 4 0.43 25.83
2.833333 | 1 0.11 25.94
2.857143 | 2 0.21 26.15
2.875 | 3 0.32 26.47
2.888889 | 2 0.21 26.69
2.9 | 1 0.11 26.80
2.909091 | 1 0.11 26.90
2.92 | 1 0.11 27.01
3 | 25 2.68 29.69
3.058824 | 1 0.11 29.80
3.076923 | 3 0.32 30.12
3.1 | 1 0.11 30.23
3.111111 | 1 0.11 30.33
3.125 | 1 0.11 30.44
3.142857 | 2 0.21 30.65
3.166667 | 2 0.21 30.87
3.2 | 4 0.43 31.30
3.222222 | 1 0.11 31.40
3.230769 | 3 0.32 31.73
3.25 | 2 0.21 31.94
3.272727 | 1 0.11 32.05
3.294118 | 1 0.11 32.15
3.3 | 1 0.11 32.26
3.315789 | 1 0.11 32.37
3.333333 | 8 0.86 33.23
3.375 | 2 0.21 33.44
3.4 | 4 0.43 33.87
3.428571 | 4 0.43 34.30
3.4375 | 2 0.21 34.51
3.444444 | 3 0.32 34.83
3.466667 | 1 0.11 34.94
3.473684 | 1 0.11 35.05
3.5 | 17 1.82 36.87
3.538461 | 1 0.11 36.98
3.545455 | 1 0.11 37.08
3.555556 | 5 0.54 37.62
3.571429 | 4 0.43 38.05
3.583333 | 2 0.21 38.26
3.6 | 3 0.32 38.59
3.611111 | 1 0.11 38.69
3.625 | 6 0.64 39.34
3.636364 | 1 0.11 39.44
3.666667 | 1 0.11 39.55
3.692308 | 2 0.21 39.76
3.7 | 1 0.11 39.87
3.705882 | 1 0.11 39.98
3.714286 | 1 0.11 40.09
3.722222 | 1 0.11 40.19
3.75 | 5 0.54 40.73
3.777778 | 3 0.32 41.05
3.785714 | 1 0.11 41.16
3.789474 | 1 0.11 41.26
3.8 | 2 0.21 41.48
3.833333 | 1 0.11 41.59
3.846154 | 1 0.11 41.69
3.857143 | 2 0.21 41.91
3.875 | 1 0.11 42.02
3.9 | 1 0.11 42.12
3.909091 | 2 0.21 42.34
3.928571 | 1 0.11 42.44
3.947368 | 1 0.11 42.55
3.954545 | 1 0.11 42.66
4 | 103 11.04 53.70
4.111111 | 1 0.11 53.80
4.125 | 2 0.21 54.02
4.133333 | 1 0.11 54.13
4.153846 | 1 0.11 54.23
4.166667 | 3 0.32 54.56
4.181818 | 2 0.21 54.77
4.2 | 3 0.32 55.09
4.25 | 1 0.11 55.20
4.266667 | 1 0.11 55.31
4.277778 | 1 0.11 55.41
4.285714 | 5 0.54 55.95
4.307693 | 1 0.11 56.06
4.333333 | 7 0.75 56.81
4.357143 | 1 0.11 56.91
4.363636 | 3 0.32 57.23
4.375 | 1 0.11 57.34
4.384615 | 1 0.11 57.45
4.388889 | 1 0.11 57.56
4.4 | 3 0.32 57.88
4.428571 | 2 0.21 58.09
4.444445 | 1 0.11 58.20
4.454545 | 2 0.21 58.41
4.5 | 11 1.18 59.59
4.538462 | 2 0.21 59.81
4.555555 | 1 0.11 59.91
4.5625 | 1 0.11 60.02
4.571429 | 3 0.32 60.34
4.615385 | 2 0.21 60.56
4.625 | 1 0.11 60.66
4.666667 | 6 0.64 61.31
4.692307 | 1 0.11 61.41
4.7 | 1 0.11 61.52
4.714286 | 1 0.11 61.63
4.727273 | 1 0.11 61.74
4.75 | 6 0.64 62.38
4.769231 | 1 0.11 62.49
4.777778 | 1 0.11 62.59
4.8 | 11 1.18 63.77
4.8125 | 1 0.11 63.88
4.818182 | 1 0.11 63.99
4.833333 | 2 0.21 64.20
4.846154 | 1 0.11 64.31
4.857143 | 1 0.11 64.42
4.875 | 1 0.11 64.52
4.909091 | 2 0.21 64.74
4.9375 | 2 0.21 64.95
5 | 22 2.36 67.31
5.052631 | 1 0.11 67.42
5.055555 | 1 0.11 67.52
5.0625 | 1 0.11 67.63
5.076923 | 1 0.11 67.74
5.090909 | 4 0.43 68.17
5.1 | 1 0.11 68.27
5.142857 | 5 0.54 68.81
5.166667 | 3 0.32 69.13
5.181818 | 1 0.11 69.24
5.2 | 8 0.86 70.10
5.235294 | 1 0.11 70.20
5.25 | 3 0.32 70.53
5.333333 | 8 0.86 71.38
5.384615 | 2 0.21 71.60
5.4 | 3 0.32 71.92
5.428571 | 2 0.21 72.13
5.444445 | 1 0.11 72.24
5.454545 | 1 0.11 72.35
5.5 | 13 1.39 73.74
5.545455 | 1 0.11 73.85
5.555555 | 2 0.21 74.06
5.6 | 3 0.32 74.38
5.625 | 2 0.21 74.60
5.666667 | 10 1.07 75.67
5.7 | 1 0.11 75.78
5.714286 | 3 0.32 76.10
5.727273 | 1 0.11 76.21
5.733333 | 1 0.11 76.31
5.75 | 1 0.11 76.42
5.785714 | 1 0.11 76.53
5.8 | 1 0.11 76.63
5.833333 | 1 0.11 76.74
5.857143 | 1 0.11 76.85
5.888889 | 2 0.21 77.06
5.909091 | 1 0.11 77.17
6 | 33 3.54 80.71
6.111111 | 3 0.32 81.03
6.125 | 1 0.11 81.14
6.142857 | 1 0.11 81.24
6.153846 | 1 0.11 81.35
6.166667 | 1 0.11 81.46
6.2 | 3 0.32 81.78
6.222222 | 1 0.11 81.89
6.3 | 1 0.11 81.99
6.307693 | 1 0.11 82.10
6.333333 | 5 0.54 82.64
6.363636 | 2 0.21 82.85
6.375 | 1 0.11 82.96
6.4 | 2 0.21 83.17
6.421052 | 1 0.11 83.28
6.428571 | 3 0.32 83.60
6.5 | 14 1.50 85.10
6.545455 | 2 0.21 85.32
6.583333 | 1 0.11 85.42
6.6 | 2 0.21 85.64
6.642857 | 1 0.11 85.74
6.666667 | 1 0.11 85.85
6.692307 | 2 0.21 86.07
6.714286 | 4 0.43 86.50
6.75 | 3 0.32 86.82
6.8 | 2 0.21 87.03
6.857143 | 2 0.21 87.25
6.888889 | 2 0.21 87.46
6.909091 | 1 0.11 87.57
7 | 10 1.07 88.64
7.076923 | 1 0.11 88.75
7.090909 | 2 0.21 88.96
7.111111 | 4 0.43 89.39
7.142857 | 1 0.11 89.50
7.181818 | 1 0.11 89.60
7.2 | 2 0.21 89.82
7.214286 | 1 0.11 89.92
7.230769 | 1 0.11 90.03
7.25 | 1 0.11 90.14
7.307693 | 1 0.11 90.25
7.333333 | 8 0.86 91.10
7.4 | 1 0.11 91.21
7.416667 | 1 0.11 91.32
7.5 | 3 0.32 91.64
7.538462 | 1 0.11 91.75
7.555555 | 1 0.11 91.85
7.571429 | 1 0.11 91.96
7.583333 | 1 0.11 92.07
7.636364 | 1 0.11 92.18
7.666667 | 1 0.11 92.28
7.714286 | 3 0.32 92.60
7.75 | 1 0.11 92.71
7.857143 | 2 0.21 92.93
7.888889 | 1 0.11 93.03
8 | 16 1.71 94.75
8.142858 | 1 0.11 94.86
8.166667 | 3 0.32 95.18
8.25 | 2 0.21 95.39
8.285714 | 1 0.11 95.50
8.4 | 2 0.21 95.71
8.6 | 2 0.21 95.93
8.608696 | 1 0.11 96.03
8.785714 | 1 0.11 96.14
8.888889 | 1 0.11 96.25
9 | 35 3.75 100.00
------------+-----------------------------------
Total | 933 100.00
tab mv717, nol
occupation |
(grouped) | Freq. Percent Cum.
------------+-----------------------------------
0 | 1,865 24.72 24.72
1 | 515 6.83 31.55
4 | 2,507 33.23 64.78
6 | 978 12.96 77.74
8 | 527 6.99 84.73
9 | 1,152 15.27 100.00
------------+-----------------------------------
Total | 7,544 100.00
|
|
|
Re: Aggregating household level data [message #10400 is a reply to message #10394] |
Mon, 25 July 2016 17:59 |
Reduced-For(u)m
Messages: 292 Registered: March 2013
|
Senior Member |
|
|
It looks to me like you are telling Stata to treat your categorical variable as a continuous variable. If you want to keep each individual occupation, you'll need to create a separate dummy variable for each occupation, and then when you collapse those you will have a proportion of the population with that occupation in that cluster. If there are too many different groups, you'll probably need to combine them in some way.
But right now I think you are just getting a meaningless number because you are treating the variable value of, say, "4" as the number 4 and not as "occupation group 4." So those numbers below are meaningless.
|
|
|
|
Re: Aggregating household level data [message #10596 is a reply to message #10577] |
Mon, 15 August 2016 08:33 |
Bridgette-DHS
Messages: 3203 Registered: February 2013
|
Senior Member |
|
|
Following is a response from Senior DHS Stata Specialist, Tom Pullum:
The following Stata lines will calculate the proportions of men in each cluster who are in each category of mv717. The crucial lines are the one that begins with "xi" and the one that begins with "collapse".
use e:\DHS\DHS_data\MR_files\KEMR70FL.dta, clear
keep mv001 mv005 mv717
tab mv717,m
* Give the NA cases a code of 99
replace mv717=99 if mv717==.
xi i.mv717, noomit
gen n=1
collapse (mean) _I* (sum) n (first) mv005, by(mv001)
rename _I* *
save e:\DHS\DHS_data\scratch\KEMRtemp.dta, replace
* This cluster-level file has the number of cases, weight, and the proportions
* of men in each category of mv717.
* You will need to attach variable names to the mv717* variables
* Proceed to the following steps if you want to merge back with the MR file
drop mv005
sort mv001
use e:\DHS\DHS_data\MR_files\KEMR70FL.dta, clear
* I would reduce to just the variables you actually need in the MR file
* example:
keep mv0*
sort mv001 mv002 mv003
merge mv001 using e:\DHS\DHS_data\scratch\KEMRtemp.dta
drop _merge
* save this file with another name
|
|
|
Re: Aggregating household level data [message #14733 is a reply to message #10596] |
Wed, 02 May 2018 15:59 |
Hassen
Messages: 121 Registered: April 2018 Location: Ethiopia,Africa
|
Senior Member |
|
|
Dear Bridgette,One of the independent variable in my MPH thesis,Multiple child deprivation index ( children having low birth weght,not breast feed,etc) at the community level by Aggregating the individual variables to create the community index. Thus How can I create it using SPSS?
Thank you for assistance and advice!!
Hassen Ali(Chief Public Health Professional Specialist)
|
|
|
Re: Aggregating household level data [message #14746 is a reply to message #14733] |
Thu, 03 May 2018 08:59 |
Bridgette-DHS
Messages: 3203 Registered: February 2013
|
Senior Member |
|
|
Following is another response from Senior DHS Stata Specialist, Tom Pullum:
The analysis team at DHS does not use SPSS, but we believe the relevant commands are aggregate and compute. (In Stata you could use "collapse" or some of the "egen" commands.) You might just try a google search, or perhaps another user can help
|
|
|